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For fe L,(R"), with 1<p< 0, ¢>0 and xeR” we denote by 7°(f)(x) the set
of every best constant approximant to f in the ball B(x, ¢). In this paper we extend
the operators T, to the space L,_(R")+ L (R"), where L, is the set of every
measurable functions finite almost everywhere. Moreover we consider the maximal
operators associated to the operators T, and we prove maximal inequalities for
them. As a consequence of these inequalities we obtain a generalization of Lebesgue’s
Differentiation Theorem. © 2001 Academic Press
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1. INTRODUCTION AND NOTATION

In this paper we consider a problem related to best local approximation.
The notion may be stated as follows. Let f: R” > R be a function in a
normed linear space X with norm |-|. Let ¥ denote a subset of X. Let
B(x, ¢) denote a net of sets containing x with diameters shrinking to 0 as ¢ — 0.
For each ¢ >0 suppose that we have f, € V" which minimizes [[( /' —g) xp(x, ) |
for ge V, where yp, . is the characteristic function of B(x, ¢). If f, = f, eV
then £, is said to be the best local approximant of fat x. In [ 1] Chui, Diamond
and Raphael proved that if f have m + 1 derivatives at x and the subspace
V< C™*Y(R") is uniquely interpolating at x of order m then the best local
approximant of f at x from V is the unique f, € VV whose derivatives up to
order m match those of f at x.
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Clearly the condition V"= X can be substituted by Vyg, ., =X for every
¢>0. We observe that if X' = L,(R"), V' is the set of constant functions and
B(x, ¢) is the ball of center in x and radius ¢ then

1

) B ) 7

As a consequence of the previous result we have that f,(x)— f(x) for
fe CY{R") and for every x € R”. But it is well known that a more adequate
version of this fact is given by the Lebesgue’s Differentiation Theorem,
which says that f,(x) — f(x) a.e. for every locally integrable function f over R”.
This theorem is related to some inequalities satisfied by the Hardy-Littlewood
maximal function, see [3].

In the present work we extend the maximal function of Hardy—Littlewood
and the Lebesgue’s Differentiation Theorem using best approximation by
constants over balls in the L,(R") spaces with 1 <p < co.

In [2] Landers and Rogge have also considered problems related with
maximal inequalities and almost everywhere convergence of best approxi-
mant. They studied these questions in L,-spaces with 1 <p < co. In particular
they extend the operator of best approximation from L, to L, _;. In this paper
we analyze the case p=1.

Throughout this paper B(x, ¢) denotes the ball in R” with center in x and
radius e. For 1 <p <o, fe L,(R") and &> 0 we define T,(f)(x) as the set
of all constants ¢ minimizing the expression

[ w-ara.
B(x, ¢)

It is well known that T5(f)(x)# O for every feL,(R"). Moreover if
1 <p <o then the set T5(f)(x) has an unique element.

For our purposes we define the following maximal function over an open
set Q < R”™

T, ,(/)(x)=sup{lal: ae T;(f)(x) and B(x, &) = Q}, (1)

e>0

where 1 <p < 0.

2. MAXIMAL INEQUALITIES

For short we put L, instead of L,(R"). Since for felL,+ L,
jB(x’g) |f/(x)|?dx<oo for any ball, we have that the operator 773 is
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defined for all functions in L,+ L. Moreover the following property
holds:

(P1) 1If g is constant on B(x, ¢) then T5(f +g)(x)=T5(f)(x) + g(x).

Next we shall see that 75 admits a natural extension. For p>1 we
extend T to L,_;+ L, so that it satisfies (P1). Notice that for 1 <p <2
the L, , space is not a normed space, however we still maintain the
notation | /|, for (| | f(x)|? dx)"”.

For felL, +L,, >0 and xeR" we consider the following function

Fa) ::j /(1) —al?~'sen(f(1)—a)d, aeR.

B(x, ¢€)

By the characterization theorem of best approximant we get F( 7°%(f)(x)) =
0 for feL,.

Now we see that for every feL, ,+ L, there exists an unique a€R
such that F(a)=0, so we define T5(f)(x)=a. In fact, as the function
@(x) = |x|?~ ! sgn(x) is continuous and strictly increasing we have that the
function F is continuous and strictly decreasing. Furthermore it satisfies
that lim, , |, F(a)= —oo and lim,_, _, F(a)= + co. Then there exists an
unique number « such that F(a)=0.

If p=1 we extend the operator T4 to the space L, of all measurable
functions which are finite almost everywhere. In this case we consider the
distribution function A(a)=m({t€ B(x,¢): f(t)>a}). For every feL,,
xeR"” and ¢>0 we define

US(f)(x) == sup{t: (1) > m(B(x, £))/2}

L(f)(x) :=inf{z: A(1) <m(B(x, ¢))/2}.
For feL, it is well known, see [4, p. 199], that T5(f)(x)=[L(f)(x),
U?(f)(x)]. So that we extend the operator T'j to the space L, by mean of
this equality.

Clearly the extended operator 7', satisfies (P1). Also we extend the
maximal function 7'§ , using (1). It is easy to show that the operator 77,
with 1 <p < oo, satisfies:

(P2) for every aeR, T5(of) =aT(f)

(P3) T, is monotone, ie., for all f, g with f<g, ae. we have
To(f)<Ty(g).
From (P2) and (P3) follows that

(P4) TN THIS].
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Since the function T5(f) is single valued for p>1, we obtain from
Lebesgue’s Dominated Convergence Theorem that 7;(f) is continuous.
Hence the maximal function 7'} 5, is lower semi-continuous, in particular is
a measurable function. If p =1 then U*(f) (L%(f)) is upper (lower) semi-
continuous. This affirmation follows easily from the fact that the function
g(x):=m({te B(x,¢): f(t)>a}) is continuous for every a. So U’ f) and
L% f) are measurable functions. However we can not prove that the maximal
function T'{( f) is measurable. As a consequence we will use the outer measure
m* in some results. Now we prove maximal inequalities for the operator 7'g .

THEOREM 2.1. Let f be a measurable function over 2 and let 1 <p < oo
then
(a) There exist constants A, and k,_, such that

A, 4 f
APl {If1>k,_ 2}

m*({xeQ: T (f)(x)>1})< | /)|~ dt

for every feL, , and 2> 0.

(b) Let p>1. For p—1<p' < oo there exists a constant A, such that

IT& ()l <Ap 1Sl

Proof. Let M;:={xeQ: Tk ,(f)(x)>4}. In order to prove part (a)
we need to consider two cases.

Case 1. 1<p<oo. In this case the set M, is measurable. For xe M,
there is e=¢,>0 such that [T;(f)(x)|>4 and B(x, ¢) = Q. Now we see
that there exists a constant C such that

m(B(x,¢)) <

vt IR VAG LG 2)

In fact, it is easy to show that there are constants B, and C, with B, <1<
C, such that

B(a? '+ b7 ) <(a+b)P ' < Cpla? " + b7, a=0, b=0. (3)

For simplicity we put N:=B(x,e)n{/>T:(f)(x)} and L:=B(x, )N
{f<T(f)(x)}. Then
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m(B(x, €)) 27~ <m(B(x, &) [ TH(/)(x)|7 7"

= [Ty d [T 01 d
<G, [ I as o
C, [ 1T = Al

<l Ifwirta

B(x, ¢)

where C= F” The last inequality follows from the equality

| 1T5000) = de= [ T = A1

and from (3).

Thus we have proved that the diameters of the balls B(x, ¢,) are bounded.
Now, by [3, Lemma 1.6], we can select from this family of balls a sequence
B(x;, ¢) of balls which are mutually disjoint and such that

Z m(B(xi’ gx,-)) 2 Dm(M/I)a
for some constant D > 0. Therefore, from (2) we obtain

m(M;) < e lzj 7" dr

B(x;, &, )
C . _
\WL et d.

Now we define fi(x) = f(x) if |f(x)| >4/2 and f;(x) =0 otherwise. Then
/()] <1 fi(x)] +4/2. From (i), (iii)) and (1) follows that 7§ ,(f)(x)<
T3 ,(f1)(x)+ 4/2. Therefore

2r-IC
oy

) <2 [ 100 de =2 f(x)|7 1 dx,

ar=t L|f|>kp,li}

where A, ,=277'C/D and k,_, =1/2. This prove the case 1.
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Case 2. p=1. I m({teQ: |f(t)|>A})= o0 then the inequality in (a)
is trivial. So that we can suppose m({reQ: |f(t)| > 1}) < oo. If xe M, then
there exist e=¢, and ae T4(f)(x) such that |a| >4 and B(x,¢) = Q. We
shall prove that

m(B(x, e)) <2m({teB(x,¢): |f(t)| > 1}). (4)
In fact, if a>0 then A< U f)(x). Hence m({te B(x,¢): |f(¢)|>1})=>
m({teB(x,¢): f(t)>1})=m(B(x,¢))/2. Suppose a <0 and let a <s < — 4.
We have that

m({teB(x,e): /()| >1})>

3

=m

The last inequality follows from L% f)(x) <a. Then (4) follows.

Since m({reQ: |f(t)| > })< oo we obtain from (4) that the diameters
of the balls B(x,¢,) are bounded. Let G :={J,ca, B(x,¢). The set G is
open. Again, an application of [3, Lemma 1.6] give us a countable sub-
collection of balls mutually disjoint and D >0 such that

Dm*(M;) <Dm(G) <y m(B(x;, &) <2m({teQ:|f(1)] > 1}).

This conclude the proof of case two if we take ko =1 and A,=2/D.

Now we prove part (b). Since |f|<|f|., a.e. we have that (P3) and
(P4) imply T(f) < | fll a.e. Hence we obtain (b) for p’ = oo with 4, =1.
Using a similar argument as given in [3, p. 7] and using the properties
(P1) and (P3) we obtain (b) for the case p—1<p’. |

3. LEBESGUE’S DIFFERENTIATION THEOREM

In the present section we shall prove a generalization of the “Lebesgue’s
Differentiation Theorem” for the operators 7' f. First we need to prove the
following theorem. By .# = .#(2) we denote the set of all measurable
functions over Q.

THEOREM 3.1. Let {T%},.o be a family of operators, not necessarily
linear, where T°*: L () — . for some 0 <p < co. We consider the maximal
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Sfunction T*(f)(x) :=sup,-o | T f)(x)|. Suppose that T* satisfies the follow-
ing weak inequality,

m*({xeQ: T*(f)(x)>1})< | f(x)]? dx, (5)

5l
S0P s e

Jfor some constants A, k > 0. Moreover assume that there exists a set & < L,(£2)
with the following properties:

(Al) For every 2>0, feL,(Q) and ge Y

*({xeQ:limsup |T*(f —g)(x) — T(f)(x) + T%g)(x)| > 1} ) =0.

e—0

(A2) If fe L,(L) then for every ¢ >0 and 4 >0 there exists g€ & such
that

| I(f—g)n)l7 <e.
{If—gl>4}

(A3) lim,_,T%g)(x)=g(x) a.e. for every ge Z.
Then we have that lim,_, o T*( f)(x) = f(x) a.e. for every fe L,(Q)

Proof. 1t is enough to prove that m*(2,) =0 for every A> 0, where

Qo :={xeQ:limsup [T f)(x)—f(x)| >4}

e—0
For ge 2 we have that Q, < Q, UQ, UQ; UQ, where

Q, :={xeQ:limsup [T*(f—g)(x) = T*(/)(x) + T*(g)(x)| > 1/4}

e—0

Q,:={xeQ:limsup |T%g)(x)— g(x)| > 1/4}

Qs :={xeQ:|g(x)— f(x)|>1/4}

Q,:={xeQ:limsup |T%f—g)(x)| > 1/4}.

e—>0

y (Al) and (A3) we have that m*(Q,)=m*(2,)=0. Let >0 be
arbltrary From (A2) we get geZ with [, .. [(f—g)(x)|?dx <9,
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where o :=min{ /4, ki/4}. Therefore we see that m(£2;) <J/a”. Moreover
inequality (5) implies that
m*(Q,) <m*({xeQ: T*(f—g)(x)>1/4})
474
S5 |(f —&)(x)|” dx
AT 1S —gl > ka/a}

474
<

0.

Since the number ¢ is arbitrary we deduce that m*(2,)=0. ||

COROLLARY 3.2. For 1<p<oo and feL, (R")+ L, (R") we have
that

lin}) T (f)(x)=f(x)ae.

If p=1 then

lim U*(f)(x)=1lim L*(f)(x)= f(x) ae.

e—>0 e—>0

for every fe Lo(R"™).

Proof. Tt is sufficient to prove that the convergence a.e. holds in all
open set Q of finite measure. Let 2 be an open set with m(Q)< co. We
observe that if felL, ;(R")+ L, (R") then felL, (£2). Hence from
Theorem 2.1 we have that T, U® and L® satisfy (5). Let & the set of all
simple functions which are continuous almost everywhere, ie. g€ 2 if
g=2"_1a;y4 with m(04;)=0, for every i=1, .., n, where d4 denote the
boundary of the set A. As a consequence of property (P1) we have that for
T°=T;,, U'or L*and g=37_,a;x4, €9

{xeQ:limsup [T f—g)(x)—T(f)(x)+Tg)(x)| >} = | 04..

e—>0 i=1

so that we have (Al) for every 1 <p < oo. The property (A2) is a conse-
quence of the well known properties of density of the simple functions
(observe that (A2) is not true if m(£2)= oo and p=1). Moreover for ge &
it is easy to prove that (A3) holds for the operators 75, U® and L*. |
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