Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls¹

Fernando Mazzone² and Héctor Cuenya

Departamento de Matemática, Facultad de Cs. Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, (5800) Río Cuarto, Argentina

Communicated by Zeev Ditzian

Received June 28, 1999; accepted in revised form January 5, 2001; published online April 27, 2001

For $f \in L_p(\mathbb{R}^n)$, with $1 \leq p < \infty$, $\varepsilon > 0$ and $x \in \mathbb{R}^n$ we denote by $T^{\varepsilon}(f)(x)$ the set of every best constant approximant to f in the ball $B(x, \varepsilon)$. In this paper we extend the operators T_p^{ε} to the space $L_{p-1}(\mathbb{R}^n) + L_{\infty}(\mathbb{R}^n)$, where L_0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators T_p^{ε} and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem. © 2001 Academic Press

Key Words: best approximant; maximal inequalities, a.e. convergence.

1. INTRODUCTION AND NOTATION

In this paper we consider a problem related to best local approximation. The notion may be stated as follows. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function in a normed linear space X with norm $\|\cdot\|$. Let V denote a subset of X. Let $B(x, \varepsilon)$ denote a net of sets containing x with diameters shrinking to 0 as $\varepsilon \to 0$. For each $\varepsilon > 0$ suppose that we have $f_{\varepsilon} \in V$ which minimizes $\|(f-g)\chi_{B(x,\varepsilon)}\|$ for $g \in V$, where $\chi_{B(x,\varepsilon)}$ is the characteristic function of $B(x, \varepsilon)$. If $f_{\varepsilon} \to f_{x} \in V$ then f_{x} is said to be the best local approximant of f at x. In [1] Chui, Diamond and Raphael proved that if f have m + 1 derivatives at x and the subspace $V \subset C^{m+1}(\mathbb{R}^n)$ is uniquely interpolating at x of order m then the best local approximant of f at x.

¹ This work was partially supported by CONICOR, and Universidad Nacional de Río Cuarto.

² Current address: Department of Mathematics, RLM 8100, University of Texas at Austin, TX 78712, U.S.A.

Clearly the condition $V \subset X$ can be substituted by $V\chi_{B(x,\varepsilon)} \subset X$ for every $\varepsilon > 0$. We observe that if $X = L_2(\mathbb{R}^n)$, V is the set of constant functions and $B(x,\varepsilon)$ is the ball of center in x and radius ε then

$$f_{\varepsilon}(x) = \frac{1}{m(B(x,\varepsilon))} \int_{B(x,\varepsilon)} f(t) dt.$$

As a consequence of the previous result we have that $f_{\varepsilon}(x) \to f(x)$ for $f \in C^1(\mathbb{R}^n)$ and for every $x \in \mathbb{R}^n$. But it is well known that a more adequate version of this fact is given by the Lebesgue's Differentiation Theorem, which says that $f_{\varepsilon}(x) \to f(x)$ a.e. for every locally integrable function f over \mathbb{R}^n . This theorem is related to some inequalities satisfied by the Hardy–Littlewood maximal function, see [3].

In the present work we extend the maximal function of Hardy–Littlewood and the Lebesgue's Differentiation Theorem using best approximation by constants over balls in the $L_p(\mathbb{R}^n)$ spaces with $1 \le p < \infty$. In [2] Landers and Rogge have also considered problems related with

In [2] Landers and Rogge have also considered problems related with maximal inequalities and almost everywhere convergence of best approximant. They studied these questions in L_p -spaces with $1 . In particular they extend the operator of best approximation from <math>L_p$ to L_{p-1} . In this paper we analyze the case p = 1.

Throughout this paper $B(x, \varepsilon)$ denotes the ball in \mathbb{R}^n with center in x and radius ε . For $1 \le p < \infty$, $f \in L_p(\mathbb{R}^n)$ and $\varepsilon > 0$ we define $T_p^{\varepsilon}(f)(x)$ as the set of all constants a minimizing the expression

$$\int_{B(x,\varepsilon)} |f(t)-a|^p dt.$$

It is well known that $T_p^{\varepsilon}(f)(x) \neq \emptyset$ for every $f \in L_p(\mathbb{R}^n)$. Moreover if $1 then the set <math>T_p^{\varepsilon}(f)(x)$ has an unique element.

For our purposes we define the following maximal function over an open set $\Omega \subset \mathbb{R}^n$.

$$T^*_{\Omega, p}(f)(x) = \sup_{\varepsilon > 0} \{ |a|: a \in T^{\varepsilon}_p(f)(x) \text{ and } B(x, \varepsilon) \subset \Omega \},$$
(1)

where $1 \leq p < \infty$.

2. MAXIMAL INEQUALITIES

For short we put L_p instead of $L_p(\mathbb{R}^n)$. Since for $f \in L_p + L_{\infty}$, $\int_{B(x,\varepsilon)} |f(x)|^p dx < \infty$ for any ball, we have that the operator T_p^{ε} is

defined for all functions in $L_p + L_{\infty}$. Moreover the following property holds:

(P1) If g is constant on
$$B(x, \varepsilon)$$
 then $T_p^{\varepsilon}(f+g)(x) = T_p^{\varepsilon}(f)(x) + g(x)$.

Next we shall see that T_p^e admits a natural extension. For p > 1 we extend T_p^e to $L_{p-1} + L_{\infty}$, so that it satisfies (P1). Notice that for $1 the <math>L_{p-1}$ space is not a normed space, however we still maintain the notation $||f||_p$ for $(\int |f(x)|^p dx)^{1/p}$.

For $f \in L_{p-1} + L_{\infty}$, $\varepsilon > 0$ and $x \in \mathbb{R}^n$ we consider the following function

$$F(a) := \int_{B(x,\varepsilon)} |f(t) - a|^{p-1} \operatorname{sgn}(f(t) - a) dt, \qquad a \in \mathbb{R}.$$

By the characterization theorem of best approximant we get $F(T^{\varepsilon}(f)(x)) = 0$ for $f \in L_p$.

Now we see that for every $f \in L_{p-1} + L_{\infty}$ there exists an unique $a \in \mathbb{R}$ such that F(a) = 0, so we define $T_p^{\varepsilon}(f)(x) = a$. In fact, as the function $\Phi(x) = |x|^{p-1} \operatorname{sgn}(x)$ is continuous and strictly increasing we have that the function F is continuous and strictly decreasing. Furthermore it satisfies that $\lim_{a \to +\infty} F(a) = -\infty$ and $\lim_{a \to -\infty} F(a) = +\infty$. Then there exists an unique number a such that F(a) = 0.

If p = 1 we extend the operator T_1^{ε} to the space L_0 of all measurable functions which are finite almost everywhere. In this case we consider the distribution function $\lambda(a) = m(\{t \in B(x, \varepsilon) : f(t) > a\})$. For every $f \in L_0$, $x \in \mathbb{R}^n$ and $\varepsilon > 0$ we define

$$U^{\varepsilon}(f)(x) := \sup\{t: \lambda(t) \ge m(B(x,\varepsilon))/2\}$$
$$L^{\varepsilon}(f)(x) := \inf\{t: \lambda(t) \le m(B(x,\varepsilon))/2\}.$$

For $f \in L_1$ it is well known, see [4, p. 199], that $T_1^e(f)(x) = [L^e(f)(x), U^e(f)(x)]$. So that we extend the operator T_1^e to the space L_0 by mean of this equality.

Clearly the extended operator T_p^{ε} satisfies (P1). Also we extend the maximal function $T_{\Omega, p}^{*}$ using (1). It is easy to show that the operator T_p^{ε} , with $1 \leq p < \infty$, satisfies:

(P2) for every $\alpha \in \mathbb{R}$, $T_{p}^{\varepsilon}(\alpha f) = \alpha T_{p}^{\varepsilon}(f)$

(P3) T_p^{ε} is monotone, i.e., for all f, g with $f \leq g$, a.e. we have $T_p^{\varepsilon}(f) \leq T_p^{\varepsilon}(g)$.

From (P2) and (P3) follows that

(P4) $|T_p^{\varepsilon}(f)| \leq T_p^{\varepsilon}(|f|).$

Since the function $T_p^{\varepsilon}(f)$ is single valued for p > 1, we obtain from Lebesgue's Dominated Convergence Theorem that $T_p^{\varepsilon}(f)$ is continuous. Hence the maximal function $T_{p,\Omega}^{*}$ is lower semi-continuous, in particular is a measurable function. If p = 1 then $U^{\varepsilon}(f)$ ($L^{\varepsilon}(f)$) is upper (lower) semicontinuous. This affirmation follows easily from the fact that the function $g(x) := m(\{t \in B(x, \varepsilon) : f(t) > a\})$ is continuous for every a. So $U^{\varepsilon}(f)$ and $L^{\varepsilon}(f)$ are measurable functions. However we can not prove that the maximal function $T_1^*(f)$ is measurable. As a consequence we will use the outer measure m^* in some results. Now we prove maximal inequalities for the operator $T_{\Omega, p}^{\varepsilon}$.

THEOREM 2.1. Let f be a measurable function over Ω and let $1 \leq p < \infty$ then

(a) There exist constants A_{p-1} and k_{p-1} such that

$$m^{*}(\{x \in \Omega : T^{*}_{\Omega, p}(f)(x) > \lambda\}) \leq \frac{A_{p-1}}{\lambda^{p-1}} \int_{\{|f| > k_{p-1}\lambda\}} |f(t)|^{p-1} dt$$

for every $f \in L_{p-1}$ and $\lambda > 0$.

(b) Let p > 1. For $p - 1 < p' \le \infty$ there exists a constant $A_{p'}$ such that

$$||T^*_{\Omega, p}(f)||_{p'} \leq A_{p'} ||f||_{p'}.$$

Proof. Let $M_{\lambda} := \{x \in \Omega : T^*_{\Omega, p}(f)(x) > \lambda\}$. In order to prove part (a) we need to consider two cases.

Case 1. $1 . In this case the set <math>M_{\lambda}$ is measurable. For $x \in M_{\lambda}$ there is $\varepsilon = \varepsilon_x > 0$ such that $|T_p^{\varepsilon}(f)(x)| > \lambda$ and $B(x, \varepsilon) \subset \Omega$. Now we see that there exists a constant C such that

$$m(B(x,\varepsilon)) \leq \frac{C}{\lambda^{p-1}} \int_{B(x,\varepsilon)} |f(t)|^{p-1} dt.$$
(2)

In fact, it is easy to show that there are constants B_p and C_p with $B_p \le 1 \le C_p$ such that

$$B_p(a^{p-1}+b^{p-1}) \leqslant (a+b)^{p-1} \leqslant C_p(a^{p-1}+b^{p-1}), \qquad a \geqslant 0, \quad b \geqslant 0. \tag{3}$$

For simplicity we put $N := B(x, \varepsilon) \cap \{f > T_p^{\varepsilon}(f)(x)\}$ and $L := B(x, \varepsilon) \cap \{f \leq T_p^{\varepsilon}(f)(x)\}$. Then

$$\begin{split} m(B(x,\varepsilon)) \, \lambda^{p-1} &\leqslant m(B(x,\varepsilon)) \, |T_{p}^{\varepsilon}(f)(x)|^{p-1} \\ &= \int_{N} |T_{p}^{\varepsilon}(f)(x)|^{p-1} \, dt + \int_{L} |T_{p}^{\varepsilon}(f)(x)|^{p-1} \, dt \\ &\leqslant C_{p} \int_{N} |T_{p}^{\varepsilon}(f)(x)|^{p-1} \, dt + C_{p} \int_{L} |f(t)|^{p-1} \, dt \\ &\quad + C_{p} \int_{L} |T_{p}^{\varepsilon}(f)(x) - f(t)|^{p-1} \, dt \\ &\leqslant C \int_{B(x,\varepsilon)} |f(t)|^{p-1} \, dt, \end{split}$$

where $C = \frac{C_p}{B_p}$. The last inequality follows from the equality

$$\int_{L} |T_{p}^{\varepsilon}(f)(x) - f(t)|^{p-1} dt = \int_{N} |T_{p}^{\varepsilon}(f)(x) - f(t)|^{p-1} dt$$

and from (3).

Thus we have proved that the diameters of the balls $B(x, \varepsilon_x)$ are bounded. Now, by [3, Lemma 1.6], we can select from this family of balls a sequence $B(x_i, \varepsilon_{x_i})$ of balls which are mutually disjoint and such that

$$\sum_{i} m(B(x_{i}, \varepsilon_{x_{i}})) \ge Dm(M_{\lambda}),$$

for some constant D > 0. Therefore, from (2) we obtain

$$\begin{split} m(M_{\lambda}) \leqslant & \frac{C}{D\lambda^{p-1}} \sum_{i} \int_{B(x_{i}, \, \varepsilon_{x_{i}})} |f(t)|^{p-1} \, dt \\ \leqslant & \frac{C}{D\lambda^{p-1}} \int_{\Omega} |f(t)|^{p-1} \, dt. \end{split}$$

Now we define $f_1(x) = f(x)$ if $|f(x)| > \lambda/2$ and $f_1(x) = 0$ otherwise. Then $|f(x)| \leq |f_1(x)| + \lambda/2$. From (i), (iii) and (1) follows that $T^*_{\Omega, p}(f)(x) \leq T^*_{\Omega, p}(f_1)(x) + \lambda/2$. Therefore

$$m(M_{\lambda}) \leqslant \frac{2^{p-1}C}{D\lambda^{p-1}} \int_{\Omega} |f_1(x)| \, dx = \frac{A_{p-1}}{\lambda^{p-1}} \int_{\{|f| > k_{p-1}\lambda\}} |f(x)|^{p-1} \, dx,$$

where $A_{p-1} = 2^{p-1}C/D$ and $k_{p-1} = 1/2$. This prove the case 1.

Case 2. p = 1. If $m(\{t \in \Omega : |f(t)| > \lambda\}) = \infty$ then the inequality in (a) is trivial. So that we can suppose $m(\{t \in \Omega : |f(t)| > \lambda\}) < \infty$. If $x \in M_{\lambda}$ then there exist $\varepsilon = \varepsilon_x$ and $a \in T_1^{\varepsilon}(f)(x)$ such that $|a| > \lambda$ and $B(x, \varepsilon) \subset \Omega$. We shall prove that

$$m(B(x,\varepsilon)) \leq 2m(\{t \in B(x,\varepsilon) : |f(t)| > \lambda\}).$$
(4)

In fact, if a > 0 then $\lambda < U^{\varepsilon}(f)(x)$. Hence $m(\{t \in B(x, \varepsilon) : |f(t)| > \lambda\}) \ge m(\{t \in B(x, \varepsilon) : f(t) > \lambda\}) \ge m(B(x, \varepsilon))/2$. Suppose a < 0 and let $a < s < -\lambda$. We have that

$$m(\{t \in B(x, \varepsilon) : |f(t)| > \lambda\}) \ge m(\{t \in B(x, \varepsilon) : f(t) < -\lambda\})$$
$$= m(B(x, \varepsilon)) - m(\{t \in B(x, \varepsilon) : f(t) \ge -\lambda\})$$
$$\ge m(B(x, \varepsilon)) - m(\{t \in B(x, \varepsilon) : f(t) > s\})$$
$$\ge m(B(x, \varepsilon))/2.$$

The last inequality follows from $L^{\varepsilon}(f)(x) \leq a$. Then (4) follows.

Since $m(\{t \in \Omega : |f(t)| > \lambda\}) < \infty$ we obtain from (4) that the diameters of the balls $B(x, \varepsilon_x)$ are bounded. Let $G := \bigcup_{x \in M_\lambda} B(x, \varepsilon)$. The set G is open. Again, an application of [3, Lemma 1.6] give us a countable subcollection of balls mutually disjoint and D > 0 such that

$$Dm^*(M_{\lambda}) \leq Dm(G) \leq \sum_{i} m(B(x_i, \varepsilon_i)) \leq 2m(\{t \in \Omega : |f(t)| > \lambda\}).$$

This conclude the proof of case two if we take $k_0 = 1$ and $A_0 = 2/D$.

Now we prove part (b). Since $|f| \leq ||f||_{\infty}$, a.e. we have that (P3) and (P4) imply $T_p^{\varepsilon}(f) \leq ||f||_{\infty}$ a.e. Hence we obtain (b) for $p' = \infty$ with $A_{\infty} = 1$. Using a similar argument as given in [3, p. 7] and using the properties (P1) and (P3) we obtain (b) for the case p - 1 < p'.

3. LEBESGUE'S DIFFERENTIATION THEOREM

In the present section we shall prove a generalization of the "Lebesgue's Differentiation Theorem" for the operators $T_p^{\varepsilon} f$. First we need to prove the following theorem. By $\mathcal{M} = \mathcal{M}(\Omega)$ we denote the set of all measurable functions over Ω .

THEOREM 3.1. Let $\{T^e\}_{e>0}$ be a family of operators, not necessarily linear, where T^e : $L_p(\Omega) \to \mathcal{M}$ for some $0 \leq p < \infty$. We consider the maximal

function $T^*(f)(x) := \sup_{\varepsilon > 0} |T^{\varepsilon}(f)(x)|$. Suppose that T^* satisfies the following weak inequality,

$$m^*(\left\{x \in \Omega : T^*(f)(x) > \lambda\right\}) \leq \frac{A}{\lambda^p} \int_{\left\{|f| > k\lambda\right\}} |f(x)|^p \, dx,\tag{5}$$

for some constants A, k > 0. Moreover assume that there exists a set $\mathcal{D} \subset L_p(\Omega)$ with the following properties:

(A1) For every $\lambda > 0$, $f \in L_p(\Omega)$ and $g \in \mathcal{D}$

$$m^*(\left\{x\in\Omega: \limsup_{\varepsilon\to 0}|T^\varepsilon(f-g)(x)-T^\varepsilon(f)(x)+T^\varepsilon(g)(x)|>\lambda\right\})=0.$$

(A2) If $f \in L_p(\Omega)$ then for every $\varepsilon > 0$ and $\lambda > 0$ there exists $g \in \mathcal{D}$ such that

$$\int_{\{|f-g|>\lambda\}} |(f-g)(t)|^p < \varepsilon.$$

(A3) $\lim_{\varepsilon \to 0} T^{\varepsilon}(g)(x) = g(x)$ a.e. for every $g \in \mathcal{D}$.

Then we have that $\lim_{\epsilon \to 0} T^{\epsilon}(f)(x) = f(x)$ a.e. for every $f \in L_{p}(\Omega)$.

Proof. It is enough to prove that $m^*(\Omega_0) = 0$ for every $\lambda > 0$, where

$$\mathcal{Q}_0 := \left\{ x \in \mathcal{Q} : \limsup_{\varepsilon \to 0} |T^{\varepsilon}(f)(x) - f(x)| > \lambda \right\}$$

For $g \in \mathscr{D}$ we have that $\Omega_0 \subset \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4$ where

$$\begin{split} \Omega_1 &:= \big\{ x \in \Omega : \limsup_{\varepsilon \to 0} |T^{\varepsilon}(f-g)(x) - T^{\varepsilon}(f)(x) + T^{\varepsilon}(g)(x)| > \lambda/4 \big\} \\ \Omega_2 &:= \big\{ x \in \Omega : \limsup_{\varepsilon \to 0} |T^{\varepsilon}(g)(x) - g(x)| > \lambda/4 \big\} \\ \Omega_3 &:= \big\{ x \in \Omega : |g(x) - f(x)| > \lambda/4 \big\} \\ \Omega_4 &:= \big\{ x \in \Omega : \limsup_{\varepsilon \to 0} |T^{\varepsilon}(f-g)(x)| > \lambda/4 \big\}. \end{split}$$

By (A1) and (A3) we have that $m^*(\Omega_1) = m^*(\Omega_2) = 0$. Let $\delta > 0$ be arbitrary. From (A2) we get $g \in \mathcal{D}$ with $\int_{\{|f-g| > \alpha\}} |(f-g)(x)|^p dx < \delta$,

where $\alpha := \min{\{\lambda/4, k\lambda/4\}}$. Therefore we see that $m(\Omega_3) < \delta/\alpha^p$. Moreover inequality (5) implies that

$$\begin{split} m^*(\Omega_4) &\leqslant m^*(\left\{x \in \Omega : T^*(f-g)(x) > \lambda/4\right\}) \\ &\leqslant \frac{4^p A}{\lambda^p} \int_{\left\{|f-g| > k\lambda/4\right\}} |(f-g)(x)|^p \, dx \\ &\leqslant \frac{4^p A}{\lambda^p} \delta. \end{split}$$

Since the number δ is arbitrary we deduce that $m^*(\Omega_0) = 0$.

COROLLARY 3.2. For $1 and <math>f \in L_{p-1}(\mathbb{R}^n) + L_{\infty}(\mathbb{R}^n)$ we have that

$$\lim_{\varepsilon \to 0} T_p^{\varepsilon}(f)(x) = f(x) \ a.e.$$

If p = 1 then

$$\lim_{\varepsilon \to 0} U^{\varepsilon}(f)(x) = \lim_{\varepsilon \to 0} L^{\varepsilon}(f)(x) = f(x) \ a.e.$$

for every $f \in L_0(\mathbb{R}^n)$.

Proof. It is sufficient to prove that the convergence a.e. holds in all open set Ω of finite measure. Let Ω be an open set with $m(\Omega) < \infty$. We observe that if $f \in L_{p-1}(\mathbb{R}^n) + L_{\infty}(\mathbb{R}^n)$ then $f \in L_{p-1}(\Omega)$. Hence from Theorem 2.1 we have that T_p^e , U^e and L^e satisfy (5). Let \mathcal{D} the set of all simple functions which are continuous almost everywhere, i.e. $g \in \mathcal{D}$ if $g = \sum_{i=1}^n a_i \chi_{A_i}$ with $m(\partial A_i) = 0$, for every i = 1, ..., n, where ∂A denote the boundary of the set A. As a consequence of property (P1) we have that for $T^e = T_p^e$, U^e or L^e and $g = \sum_{i=1}^n a_i \chi_{A_i} \in \mathcal{D}$

$$\left\{x\in \Omega: \limsup_{\varepsilon\to 0} |T^\varepsilon(f-g)(x)-T^\varepsilon(f)(x)+T^\varepsilon(g)(x)|>\lambda\right\}\subset \bigcup_{i=1}^n\partial A_i.$$

so that we have (A1) for every $1 \le p < \infty$. The property (A2) is a consequence of the well known properties of density of the simple functions (observe that (A2) is not true if $m(\Omega) = \infty$ and p = 1). Moreover for $g \in \mathcal{D}$ it is easy to prove that (A3) holds for the operators T_p^{ε} , U^{ε} and L^{ε} .

REFERENCES

- C. Chui, H. Diamod, and L. Raphael, Best local approximation in several variables, J. Approx. Theory 40 (1984), 343–350.
- D. Landers and L. Rogge, Isotonic approximation in L_s, J. Approx. Theory 31 (1981), 199–223.
- 3. E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, NY, 1970.
- 4. A. Torchinsky, "Real-Variable Methods in Harmonic Analysis," Academic Press, Orlando, 1986.