Maximal Inequalities and Lebesgue's Differentiation Theorem for Best Approximant by Constant over Balls ${ }^{1}$

Fernando Mazzone ${ }^{2}$ and Héctor Cuenya
Departamento de Matemática, Facultad de Cs. Exactas Fco-Qcas y Naturales, Universidad Nacional de Rio Cuarto, (5800) Río Cuarto, Argentina
Communicated by Zeev Ditzian

Received June 28, 1999; accepted in revised form January 5, 2001;
published online April 27, 2001

Abstract

For $f \in L_{p}\left(\mathbb{R}^{n}\right)$, with $1 \leqslant p<\infty, \varepsilon>0$ and $x \in \mathbb{R}^{n}$ we denote by $T^{\varepsilon}(f)(x)$ the set of every best constant approximant to f in the ball $B(x, \varepsilon)$. In this paper we extend the operators T_{p}^{ε} to the space $L_{p-1}\left(\mathbb{R}^{n}\right)+L_{\infty}\left(\mathbb{R}^{n}\right)$, where L_{0} is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators T_{p}^{ε} and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem. © 2001 Academic Press

Key Words: best approximant; maximal inequalities, a.e. convergence.

1. INTRODUCTION AND NOTATION

In this paper we consider a problem related to best local approximation. The notion may be stated as follows. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function in a normed linear space X with norm $\|\cdot\|$. Let V denote a subset of X. Let $B(x, \varepsilon)$ denote a net of sets containing x with diameters shrinking to 0 as $\varepsilon \rightarrow 0$. For each $\varepsilon>0$ suppose that we have $f_{\varepsilon} \in V$ which minimizes $\left\|(f-g) \chi_{B(x, \varepsilon)}\right\|$ for $g \in V$, where $\chi_{B(x, \varepsilon)}$ is the characteristic function of $B(x, \varepsilon)$. If $f_{\varepsilon} \rightarrow f_{x} \in V$ then f_{x} is said to be the best local approximant of f at x. In [1] Chui, Diamond and Raphael proved that if f have $m+1$ derivatives at x and the subspace $V \subset C^{m+1}\left(\mathbb{R}^{n}\right)$ is uniquely interpolating at x of order m then the best local approximant of f at x from V is the unique $f_{x} \in V$ whose derivatives up to order m match those of f at x.

[^0]Clearly the condition $V \subset X$ can be substituted by $V \chi_{B(x, \varepsilon)} \subset X$ for every $\varepsilon>0$. We observe that if $X=L_{2}\left(\mathbb{R}^{n}\right), V$ is the set of constant functions and $B(x, \varepsilon)$ is the ball of center in x and radius ε then

$$
f_{\varepsilon}(x)=\frac{1}{m(B(x, \varepsilon))} \int_{B(x, \varepsilon)} f(t) d t
$$

As a consequence of the previous result we have that $f_{\varepsilon}(x) \rightarrow f(x)$ for $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and for every $x \in \mathbb{R}^{n}$. But it is well known that a more adequate version of this fact is given by the Lebesgue's Differentiation Theorem, which says that $f_{\varepsilon}(x) \rightarrow f(x)$ a.e. for every locally integrable function f over \mathbb{R}^{n}. This theorem is related to some inequalities satisfied by the Hardy-Littlewood maximal function, see [3].

In the present work we extend the maximal function of Hardy-Littlewood and the Lebesgue's Differentiation Theorem using best approximation by constants over balls in the $L_{p}\left(\mathbb{R}^{n}\right)$ spaces with $1 \leqslant p<\infty$.

In [2] Landers and Rogge have also considered problems related with maximal inequalities and almost everywhere convergence of best approximant. They studied these questions in L_{p}-spaces with $1<p<\infty$. In particular they extend the operator of best approximation from L_{p} to L_{p-1}. In this paper we analyze the case $p=1$.

Throughout this paper $B(x, \varepsilon)$ denotes the ball in \mathbb{R}^{n} with center in x and radius ε. For $1 \leqslant p<\infty, f \in L_{p}\left(\mathbb{R}^{n}\right)$ and $\varepsilon>0$ we define $T_{p}^{\varepsilon}(f)(x)$ as the set of all constants a minimizing the expression

$$
\int_{B(x, \varepsilon)}|f(t)-a|^{p} d t .
$$

It is well known that $T_{p}^{\varepsilon}(f)(x) \neq \varnothing$ for every $f \in L_{p}\left(\mathbb{R}^{n}\right)$. Moreover if $1<p<\infty$ then the set $T_{p}^{\varepsilon}(f)(x)$ has an unique element.

For our purposes we define the following maximal function over an open set $\Omega \subset \mathbb{R}^{n}$.

$$
\begin{equation*}
T_{\Omega, p}^{*}(f)(x)=\sup _{\varepsilon>0}\left\{|a|: a \in T_{p}^{\varepsilon}(f)(x) \text { and } B(x, \varepsilon) \subset \Omega\right\}, \tag{1}
\end{equation*}
$$

where $1 \leqslant p<\infty$.

2. MAXIMAL INEQUALITIES

For short we put L_{p} instead of $L_{p}\left(\mathbb{R}^{n}\right)$. Since for $f \in L_{p}+L_{\infty}$, $\int_{B(x, \varepsilon)}|f(x)|^{p} d x<\infty$ for any ball, we have that the operator T_{p}^{ε} is
defined for all functions in $L_{p}+L_{\infty}$. Moreover the following property holds:
(P1) If g is constant on $B(x, \varepsilon)$ then $T_{p}^{\varepsilon}(f+g)(x)=T_{p}^{\varepsilon}(f)(x)+g(x)$.
Next we shall see that T_{p}^{e} admits a natural extension. For $p>1$ we extend T_{p}^{ε} to $L_{p-1}+L_{\infty}$, so that it satisfies (P1). Notice that for $1<p<2$ the L_{p-1} space is not a normed space, however we still maintain the notation $\|f\|_{p}$ for $\left(\int|f(x)|^{p} d x\right)^{1 / p}$.

For $f \in L_{p-1}+L_{\infty}, \varepsilon>0$ and $x \in \mathbb{R}^{n}$ we consider the following function

$$
F(a):=\int_{B(x, \varepsilon)}|f(t)-a|^{p-1} \operatorname{sgn}(f(t)-a) d t, \quad a \in \mathbb{R} .
$$

By the characterization theorem of best approximant we get $F\left(T^{\varepsilon}(f)(x)\right)=$ 0 for $f \in L_{p}$.

Now we see that for every $f \in L_{p-1}+L_{\infty}$ there exists an unique $a \in \mathbb{R}$ such that $F(a)=0$, so we define $T_{p}^{\varepsilon}(f)(x)=a$. In fact, as the function $\Phi(x)=|x|^{p-1} \operatorname{sgn}(x)$ is continuous and strictly increasing we have that the function F is continuous and strictly decreasing. Furthermore it satisfies that $\lim _{a \rightarrow+\infty} F(a)=-\infty$ and $\lim _{a \rightarrow-\infty} F(a)=+\infty$. Then there exists an unique number a such that $F(a)=0$.

If $p=1$ we extend the operator T_{1}^{ε} to the space L_{0} of all measurable functions which are finite almost everywhere. In this case we consider the distribution function $\lambda(a)=m(\{t \in B(x, \varepsilon): f(t)>a\})$. For every $f \in L_{0}$, $x \in \mathbb{R}^{n}$ and $\varepsilon>0$ we define

$$
\begin{aligned}
U^{\varepsilon}(f)(x) & :=\sup \{t: \lambda(t) \geqslant m(B(x, \varepsilon)) / 2\} \\
L^{\varepsilon}(f)(x) & :=\inf \{t: \lambda(t) \leqslant m(B(x, \varepsilon)) / 2\} .
\end{aligned}
$$

For $f \in L_{1}$ it is well known, see [4, p. 199], that $T_{1}^{\varepsilon}(f)(x)=\left[L^{\varepsilon}(f)(x)\right.$, $\left.U^{e}(f)(x)\right]$. So that we extend the operator T_{1}^{ε} to the space L_{0} by mean of this equality.

Clearly the extended operator T_{p}^{ε} satisfies (P 1). Also we extend the maximal function $T_{\Omega, p}^{*}$ using (1). It is easy to show that the operator T_{p}^{ε}, with $1 \leqslant p<\infty$, satisfies:
(P2) for every $\alpha \in \mathbb{R}, T_{p}^{\varepsilon}(\alpha f)=\alpha T_{p}^{\varepsilon}(f)$
(P3) T_{p}^{ε} is monotone, i.e., for all f, g with $f \leqslant g$, a.e. we have $T_{p}^{\varepsilon}(f) \leqslant T_{p}^{\varepsilon}(g)$.

From (P2) and (P3) follows that
(P4) $\left|T_{p}^{\varepsilon}(f)\right| \leqslant T_{p}^{\varepsilon}(|f|)$.

Since the function $T_{p}^{\varepsilon}(f)$ is single valued for $p>1$, we obtain from Lebesgue's Dominated Convergence Theorem that $T_{p}^{\varepsilon}(f)$ is continuous. Hence the maximal function $T_{p, \Omega}^{*}$ is lower semi-continuous, in particular is a measurable function. If $p=1$ then $U^{\varepsilon}(f)\left(L^{\varepsilon}(f)\right)$ is upper (lower) semicontinuous. This affirmation follows easily from the fact that the function $g(x):=m(\{t \in B(x, \varepsilon): f(t)>a\})$ is continuous for every a. So $U^{\varepsilon}(f)$ and $L^{\varepsilon}(f)$ are measurable functions. However we can not prove that the maximal function $T_{1}^{*}(f)$ is measurable. As a consequence we will use the outer measure m^{*} in some results. Now we prove maximal inequalities for the operator $T_{\Omega, p}^{*}$.

Theorem 2.1. Let f be a measurable function over Ω and let $1 \leqslant p<\infty$ then
(a) There exist constants A_{p-1} and k_{p-1} such that

$$
m^{*}\left(\left\{x \in \Omega: T_{\Omega, p}^{*}(f)(x)>\lambda\right\}\right) \leqslant \frac{A_{p-1}}{\lambda^{p-1}} \int_{\left\{|f|>k_{p-1} \lambda\right\}}|f(t)|^{p-1} d t
$$

for every $f \in L_{p-1}$ and $\lambda>0$.
(b) Let $p>1$. For $p-1<p^{\prime} \leqslant \infty$ there exists a constant $A_{p^{\prime}}$ such that

$$
\left\|T_{\Omega, p}^{*}(f)\right\|_{p^{\prime}} \leqslant A_{p^{\prime}}\|f\|_{p^{\prime}}
$$

Proof. Let $M_{\lambda}:=\left\{x \in \Omega: T_{\Omega, p}^{*}(f)(x)>\lambda\right\}$. In order to prove part (a) we need to consider two cases.

Case 1. $1<p<\infty$. In this case the set M_{λ} is measurable. For $x \in M_{\lambda}$ there is $\varepsilon=\varepsilon_{x}>0$ such that $\left|T_{p}^{\varepsilon}(f)(x)\right|>\lambda$ and $B(x, \varepsilon) \subset \Omega$. Now we see that there exists a constant C such that

$$
\begin{equation*}
m(B(x, \varepsilon)) \leqslant \frac{C}{\lambda^{p-1}} \int_{B(x, \varepsilon)}|f(t)|^{p-1} d t . \tag{2}
\end{equation*}
$$

In fact, it is easy to show that there are constants B_{p} and C_{p} with $B_{p} \leqslant 1 \leqslant$ C_{p} such that

$$
\begin{equation*}
B_{p}\left(a^{p-1}+b^{p-1}\right) \leqslant(a+b)^{p-1} \leqslant C_{p}\left(a^{p-1}+b^{p-1}\right), \quad a \geqslant 0, \quad b \geqslant 0 . \tag{3}
\end{equation*}
$$

For simplicity we put $N:=B(x, \varepsilon) \cap\left\{f>T_{p}^{\varepsilon}(f)(x)\right\}$ and $L:=B(x, \varepsilon) \cap$ $\left\{f \leqslant T_{p}^{\varepsilon}(f)(x)\right\}$. Then

$$
\begin{aligned}
m(B(x, \varepsilon)) \lambda^{p-1} \leqslant & m(B(x, \varepsilon))\left|T_{p}^{\varepsilon}(f)(x)\right|^{p-1} \\
= & \int_{N}\left|T_{p}^{\varepsilon}(f)(x)\right|^{p-1} d t+\int_{L}\left|T_{p}^{\varepsilon}(f)(x)\right|^{p-1} d t \\
\leqslant & C_{p} \int_{N}\left|T_{p}^{\varepsilon}(f)(x)\right|^{p-1} d t+C_{p} \int_{L}|f(t)|^{p-1} d t \\
& +C_{p} \int_{L}\left|T_{p}^{\varepsilon}(f)(x)-f(t)\right|^{p-1} d t \\
\leqslant & C \int_{B(x, \varepsilon)}|f(t)|^{p-1} d t
\end{aligned}
$$

where $C=\frac{C_{p}}{B_{p}}$. The last inequality follows from the equality

$$
\int_{L}\left|T_{p}^{\varepsilon}(f)(x)-f(t)\right|^{p-1} d t=\int_{N}\left|T_{p}^{\varepsilon}(f)(x)-f(t)\right|^{p-1} d t
$$

and from (3).
Thus we have proved that the diameters of the balls $B\left(x, \varepsilon_{x}\right)$ are bounded. Now, by [3, Lemma 1.6], we can select from this family of balls a sequence $B\left(x_{i}, \varepsilon_{x_{i}}\right)$ of balls which are mutually disjoint and such that

$$
\sum_{i} m\left(B\left(x_{i}, \varepsilon_{x_{i}}\right)\right) \geqslant D m\left(M_{\lambda}\right),
$$

for some constant $D>0$. Therefore, from (2) we obtain

$$
\begin{aligned}
m\left(M_{\lambda}\right) & \leqslant \frac{C}{D \lambda^{p-1}} \sum_{i} \int_{B\left(x_{i}, \varepsilon_{x_{i}}\right)}|f(t)|^{p-1} d t \\
& \leqslant \frac{C}{D \lambda^{p-1}} \int_{\Omega}|f(t)|^{p-1} d t .
\end{aligned}
$$

Now we define $f_{1}(x)=f(x)$ if $|f(x)|>\lambda / 2$ and $f_{1}(x)=0$ otherwise. Then $|f(x)| \leqslant\left|f_{1}(x)\right|+\lambda / 2$. From (i), (iii) and (1) follows that $T_{\Omega, p}^{*}(f)(x) \leqslant$ $T_{\Omega, p}^{*}\left(f_{1}\right)(x)+\lambda / 2$. Therefore

$$
m\left(M_{\lambda}\right) \leqslant \frac{2^{p-1} C}{D \lambda^{p-1}} \int_{\Omega}\left|f_{1}(x)\right| d x=\frac{A_{p-1}}{\lambda^{p-1}} \int_{\left\{|f|>k_{p-1}\right\}}|f(x)|^{p-1} d x,
$$

where $A_{p-1}=2^{p-1} C / D$ and $k_{p-1}=1 / 2$. This prove the case 1 .

Case 2. $p=1$. If $m(\{t \in \Omega:|f(t)|>\lambda\})=\infty$ then the inequality in (a) is trivial. So that we can suppose $m(\{t \in \Omega:|f(t)|>\lambda\})<\infty$. If $x \in M_{\lambda}$ then there exist $\varepsilon=\varepsilon_{x}$ and $a \in T_{1}^{\varepsilon}(f)(x)$ such that $|a|>\lambda$ and $B(x, \varepsilon) \subset \Omega$. We shall prove that

$$
\begin{equation*}
m(B(x, \varepsilon)) \leqslant 2 m(\{t \in B(x, \varepsilon):|f(t)|>\lambda\}) . \tag{4}
\end{equation*}
$$

In fact, if $a>0$ then $\lambda<U^{\varepsilon}(f)(x)$. Hence $m(\{t \in B(x, \varepsilon):|f(t)|>\lambda\}) \geqslant$ $m(\{t \in B(x, \varepsilon): f(t)>\lambda\}) \geqslant m(B(x, \varepsilon)) / 2$. Suppose $a<0$ and let $a<s<-\lambda$. We have that

$$
\begin{aligned}
m(\{t \in B(x, \varepsilon):|f(t)|>\lambda\}) & \geqslant m(\{t \in B(x, \varepsilon): f(t)<-\lambda\}) \\
& =m(B(x, \varepsilon))-m(\{t \in B(x, \varepsilon): f(t) \geqslant-\lambda\}) \\
& \geqslant m(B(x, \varepsilon))-m(\{t \in B(x, \varepsilon): f(t)>s\}) \\
& \geqslant m(B(x, \varepsilon)) / 2 .
\end{aligned}
$$

The last inequality follows from $L^{e}(f)(x) \leqslant a$. Then (4) follows.
Since $m(\{t \in \Omega:|f(t)|>\lambda\})<\infty$ we obtain from (4) that the diameters of the balls $B\left(x, \varepsilon_{x}\right)$ are bounded. Let $G:=\bigcup_{x \in M_{\lambda}} B(x, \varepsilon)$. The set G is open. Again, an application of [3, Lemma 1.6] give us a countable subcollection of balls mutually disjoint and $D>0$ such that

$$
D m^{*}\left(M_{\lambda}\right) \leqslant \operatorname{Dm}(G) \leqslant \sum_{i} m\left(B\left(x_{i}, \varepsilon_{i}\right)\right) \leqslant 2 m(\{t \in \Omega:|f(t)|>\lambda\}) .
$$

This conclude the proof of case two if we take $k_{0}=1$ and $A_{0}=2 / D$.
Now we prove part (b). Since $|f| \leqslant\|f\|_{\infty}$, a.e. we have that (P3) and (P4) imply $T_{p}^{\varepsilon}(f) \leqslant\|f\|_{\infty}$ a.e. Hence we obtain (b) for $p^{\prime}=\infty$ with $A_{\infty}=1$. Using a similar argument as given in [3, p.7] and using the properties (P1) and (P3) we obtain (b) for the case $p-1<p^{\prime}$.

3. LEBESGUE'S DIFFERENTIATION THEOREM

In the present section we shall prove a generalization of the "Lebesgue's Differentiation Theorem" for the operators $T_{p}^{\varepsilon} f$. First we need to prove the following theorem. By $\mathscr{M}=\mathscr{M}(\Omega)$ we denote the set of all measurable functions over Ω.

Theorem 3.1. Let $\left\{T^{\varepsilon}\right\}_{\varepsilon>0}$ be a family of operators, not necessarily linear, where $T^{\varepsilon}: L_{p}(\Omega) \rightarrow \mathscr{M}$ for some $0 \leqslant p<\infty$. We consider the maximal
function $T^{*}(f)(x):=\sup _{\varepsilon>0}\left|T^{\varepsilon}(f)(x)\right|$. Suppose that T^{*} satisfies the following weak inequality,

$$
\begin{equation*}
m^{*}\left(\left\{x \in \Omega: T^{*}(f)(x)>\lambda\right\}\right) \leqslant \frac{A}{\lambda^{p}} \int_{\{|f|>k \lambda\}}|f(x)|^{p} d x \tag{5}
\end{equation*}
$$

for some constants $A, k>0$. Moreover assume that there exists a set $\mathscr{D} \subset L_{p}(\Omega)$ with the following properties:
(A1) For every $\lambda>0, f \in L_{p}(\Omega)$ and $g \in \mathscr{D}$

$$
m^{*}\left(\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(f-g)(x)-T^{\varepsilon}(f)(x)+T^{\varepsilon}(g)(x)\right|>\lambda\right\}\right)=0 .
$$

(A2) If $f \in L_{p}(\Omega)$ then for every $\varepsilon>0$ and $\lambda>0$ there exists $g \in \mathscr{D}$ such that

$$
\int_{\{|f-g|>\lambda\}}|(f-g)(t)|^{p}<\varepsilon .
$$

(A3) $\lim _{\varepsilon \rightarrow 0} T^{\varepsilon}(g)(x)=g(x)$ a.e. for every $g \in \mathscr{D}$.
Then we have that $\lim _{\varepsilon \rightarrow 0} T^{\varepsilon}(f)(x)=f(x)$ a.e. for every $f \in L_{p}(\Omega)$.
Proof. It is enough to prove that $m^{*}\left(\Omega_{0}\right)=0$ for every $\lambda>0$, where

$$
\Omega_{0}:=\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(f)(x)-f(x)\right|>\lambda\right\}
$$

For $g \in \mathscr{D}$ we have that $\Omega_{0} \subset \Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \cup \Omega_{4}$ where

$$
\begin{aligned}
& \Omega_{1}:=\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(f-g)(x)-T^{\varepsilon}(f)(x)+T^{\varepsilon}(g)(x)\right|>\lambda / 4\right\} \\
& \Omega_{2}:=\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(g)(x)-g(x)\right|>\lambda / 4\right\} \\
& \Omega_{3}:=\{x \in \Omega:|g(x)-f(x)|>\lambda / 4\} \\
& \Omega_{4}:=\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(f-g)(x)\right|>\lambda / 4\right\} .
\end{aligned}
$$

By (A1) and (A3) we have that $m^{*}\left(\Omega_{1}\right)=m^{*}\left(\Omega_{2}\right)=0$. Let $\delta>0$ be arbitrary. From (A2) we get $g \in \mathscr{D}$ with $\int_{\{|f-g|>\alpha\}}|(f-g)(x)|^{p} d x<\delta$,
where $\alpha:=\min \{\lambda / 4, k \lambda / 4\}$. Therefore we see that $m\left(\Omega_{3}\right)<\delta / \alpha^{p}$. Moreover inequality (5) implies that

$$
\begin{aligned}
m^{*}\left(\Omega_{4}\right) & \leqslant m^{*}\left(\left\{x \in \Omega: T^{*}(f-g)(x)>\lambda / 4\right\}\right) \\
& \leqslant \frac{4^{p} A}{\lambda^{p}} \int_{\{|f-g|>k \lambda / 4\}}|(f-g)(x)|^{p} d x \\
& \leqslant \frac{4^{p} A}{\lambda^{p}} \delta .
\end{aligned}
$$

Since the number δ is arbitrary we deduce that $m^{*}\left(\Omega_{0}\right)=0$.

Corollary 3.2. For $1<p<\infty$ and $f \in L_{p-1}\left(\mathbb{R}^{n}\right)+L_{\infty}\left(\mathbb{R}^{n}\right)$ we have that

$$
\lim _{\varepsilon \rightarrow 0} T_{p}^{\varepsilon}(f)(x)=f(x) \text { a.e. }
$$

If $p=1$ then

$$
\lim _{\varepsilon \rightarrow 0} U^{\varepsilon}(f)(x)=\lim _{\varepsilon \rightarrow 0} L^{\varepsilon}(f)(x)=f(x) \text { a.e. }
$$

for every $f \in L_{0}\left(\mathbb{R}^{n}\right)$.
Proof. It is sufficient to prove that the convergence a.e. holds in all open set Ω of finite measure. Let Ω be an open set with $m(\Omega)<\infty$. We observe that if $f \in L_{p-1}\left(\mathbb{R}^{n}\right)+L_{\infty}\left(\mathbb{R}^{n}\right)$ then $f \in L_{p-1}(\Omega)$. Hence from Theorem 2.1 we have that $T_{p}^{\varepsilon}, U^{\varepsilon}$ and L^{ε} satisfy (5). Let \mathscr{D} the set of all simple functions which are continuous almost everywhere, i.e. $g \in \mathscr{D}$ if $g=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$ with $m\left(\partial A_{i}\right)=0$, for every $i=1, \ldots, n$, where ∂A denote the boundary of the set A. As a consequence of property (P1) we have that for $T^{\varepsilon}=T_{p}^{\varepsilon}, U^{\varepsilon}$ or L^{ε} and $g=\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \in \mathscr{D}$

$$
\left\{x \in \Omega: \limsup _{\varepsilon \rightarrow 0}\left|T^{\varepsilon}(f-g)(x)-T^{\varepsilon}(f)(x)+T^{\varepsilon}(g)(x)\right|>\lambda\right\} \subset \bigcup_{i=1}^{n} \partial A_{i} .
$$

so that we have (A1) for every $1 \leqslant p<\infty$. The property (A2) is a consequence of the well known properties of density of the simple functions (observe that (A2) is not true if $m(\Omega)=\infty$ and $p=1$). Moreover for $g \in \mathscr{D}$ it is easy to prove that (A3) holds for the operators $T_{p}^{\varepsilon}, U^{\varepsilon}$ and L^{ε}.

REFERENCES

1. C. Chui, H. Diamod, and L. Raphael, Best local approximation in several variables, J. Approx. Theory 40 (1984), 343-350.
2. D. Landers and L. Rogge, Isotonic approximation in L_{s}, J. Approx. Theory 31 (1981), 199-223.
3. E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, NY, 1970.
4. A. Torchinsky, "Real-Variable Methods in Harmonic Analysis," Academic Press, Orlando, 1986.

[^0]: ${ }^{1}$ This work was partially supported by CONICOR, and Universidad Nacional de Río Cuarto.
 ${ }^{2}$ Current address: Department of Mathematics, RLM 8100, University of Texas at Austin, TX 78712, U.S.A.

