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For f # Lp(Rn), with 1�p<�, =>0 and x # Rn we denote by T =( f )(x) the set
of every best constant approximant to f in the ball B(x, =). In this paper we extend
the operators T =

p to the space Lp&1(Rn)+L�(Rn), where L0 is the set of every
measurable functions finite almost everywhere. Moreover we consider the maximal
operators associated to the operators T =

p and we prove maximal inequalities for
them. As a consequence of these inequalities we obtain a generalization of Lebesgue's
Differentiation Theorem. � 2001 Academic Press
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1. INTRODUCTION AND NOTATION

In this paper we consider a problem related to best local approximation.
The notion may be stated as follows. Let f: Rn � R be a function in a
normed linear space X with norm & }&. Let V denote a subset of X. Let
B(x, =) denote a net of sets containing x with diameters shrinking to 0 as = � 0.
For each =>0 suppose that we have f= # V which minimizes &( f &g) /B(x, =)&
for g # V, where /B(x, =) is the characteristic function of B(x, =). If f= � fx # V
then fx is said to be the best local approximant of f at x. In [1] Chui, Diamond
and Raphael proved that if f have m+1 derivatives at x and the subspace
V/Cm+1(Rn) is uniquely interpolating at x of order m then the best local
approximant of f at x from V is the unique fx # V whose derivatives up to
order m match those of f at x.

doi:10.1006�jath.2001.3559, available online at http:��www.idealibrary.com on

171
0021-9045�01 �35.00

Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 This work was partially supported by CONICOR, and Universidad Nacional de R@� o Cuarto.
2 Current address: Department of Mathematics, RLM 8100, University of Texas at Austin,

TX 78712, U.S.A.



Clearly the condition V/X can be substituted by V/B(x, =) /X for every
=>0. We observe that if X=L2(Rn), V is the set of constant functions and
B(x, =) is the ball of center in x and radius = then

f=(x)=
1

m(B(x, =)) |
B(x, =)

f (t) dt.

As a consequence of the previous result we have that f=(x) � f (x) for
f # C1(Rn) and for every x # Rn. But it is well known that a more adequate
version of this fact is given by the Lebesgue's Differentiation Theorem,
which says that f=(x) � f (x) a.e. for every locally integrable function f over Rn.
This theorem is related to some inequalities satisfied by the Hardy�Littlewood
maximal function, see [3].

In the present work we extend the maximal function of Hardy�Littlewood
and the Lebesgue's Differentiation Theorem using best approximation by
constants over balls in the Lp(Rn) spaces with 1�p<�.

In [2] Landers and Rogge have also considered problems related with
maximal inequalities and almost everywhere convergence of best approxi-
mant. They studied these questions in Lp-spaces with 1<p<�. In particular
they extend the operator of best approximation from Lp to Lp&1 . In this paper
we analyze the case p=1.

Throughout this paper B(x, =) denotes the ball in Rn with center in x and
radius =. For 1�p<�, f # Lp(Rn) and =>0 we define T =

p( f )(x) as the set
of all constants a minimizing the expression

|
B(x, =)

| f (t)&a| p dt.

It is well known that T =
p( f )(x){< for every f # Lp(Rn). Moreover if

1<p<� then the set T =
p( f )(x) has an unique element.

For our purposes we define the following maximal function over an open
set 0/Rn.

T*0, p( f )(x)=sup
=>0

[ |a|: a # T =
p( f )(x) and B(x, =)/0], (1)

where 1�p<�.

2. MAXIMAL INEQUALITIES

For short we put Lp instead of Lp(Rn). Since for f # Lp+L� ,
�B(x, =) | f (x)| p dx<� for any ball, we have that the operator T =

p is
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defined for all functions in Lp+L� . Moreover the following property
holds:

(P1) If g is constant on B(x, =) then T =
p( f +g)(x)=T =

p( f )(x)+ g(x).

Next we shall see that T =
p admits a natural extension. For p>1 we

extend T =
p to Lp&1+L� , so that it satisfies (P1). Notice that for 1<p<2

the Lp&1 space is not a normed space, however we still maintain the
notation & f &p for (� | f (x)| p dx)1�p.

For f # Lp&1+L� , =>0 and x # Rn we consider the following function

F(a) :=|
B(x, =)

| f (t)&a| p&1 sgn( f (t)&a) dt, a # R.

By the characterization theorem of best approximant we get F(T =( f )(x))=
0 for f # Lp .

Now we see that for every f # Lp&1+L� there exists an unique a # R
such that F(a)=0, so we define T =

p( f )(x)=a. In fact, as the function
8(x)=|x| p&1 sgn(x) is continuous and strictly increasing we have that the
function F is continuous and strictly decreasing. Furthermore it satisfies
that lima � +� F(a)=&� and lima � &� F(a)=+�. Then there exists an
unique number a such that F(a)=0.

If p=1 we extend the operator T =
1 to the space L0 of all measurable

functions which are finite almost everywhere. In this case we consider the
distribution function *(a)=m([t # B(x, =) : f (t)>a]). For every f # L0 ,
x # Rn and =>0 we define

U =( f )(x) :=sup[t: *(t)�m(B(x, =))�2]

L=( f )(x) :=inf[t: *(t)�m(B(x, =))�2].

For f # L1 it is well known, see [4, p. 199], that T =
1( f )(x)=[L=( f )(x),

U =( f )(x)]. So that we extend the operator T =
1 to the space L0 by mean of

this equality.
Clearly the extended operator T =

p satisfies (P1). Also we extend the
maximal function T*0, p using (1). It is easy to show that the operator T =

p ,
with 1�p<�, satisfies:

(P2) for every : # R, T =
p(:f )=:T =

p( f )

(P3) T =
p is monotone, i.e., for all f, g with f�g, a.e. we have

T =
p( f )�T =

p(g).

From (P2) and (P3) follows that

(P4) |T =
p( f )|�T =

p( | f | ).
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Since the function T =
p( f ) is single valued for p>1, we obtain from

Lebesgue's Dominated Convergence Theorem that T =
p( f ) is continuous.

Hence the maximal function T*p, 0 is lower semi-continuous, in particular is
a measurable function. If p=1 then U =( f ) (L=( f )) is upper (lower) semi-
continuous. This affirmation follows easily from the fact that the function
g(x) :=m([t # B(x, =) : f (t)>a]) is continuous for every a. So U =( f ) and
L=( f ) are measurable functions. However we can not prove that the maximal
function T 1*( f ) is measurable. As a consequence we will use the outer measure
m* in some results. Now we prove maximal inequalities for the operator T*0, p .

Theorem 2.1. Let f be a measurable function over 0 and let 1�p<�
then

(a) There exist constants Ap&1 and kp&1 such that

m*([x # 0 : T*0, p( f )(x)>*])�
Ap&1

* p&1 |
[ | f |>kp&1*]

| f (t)| p&1 dt

for every f # Lp&1 and *>0.

(b) Let p>1. For p&1<p$�� there exists a constant Ap$ such that

&T*0, p( f )&p$�Ap$ & f &p$ .

Proof. Let M* :=[x # 0 : T*0, p( f )(x)>*]. In order to prove part (a)
we need to consider two cases.

Case 1. 1<p<�. In this case the set M* is measurable. For x # M*

there is ===x>0 such that |T =
p( f )(x)|>* and B(x, =)/0. Now we see

that there exists a constant C such that

m(B(x, =))�
C

* p&1 |
B(x, =)

| f (t)| p&1 dt. (2)

In fact, it is easy to show that there are constants Bp and Cp with Bp�1�
Cp such that

Bp(a p&1+b p&1)�(a+b) p&1�Cp(a p&1+b p&1), a�0, b�0. (3)

For simplicity we put N :=B(x, =) & [ f>T =
p( f )(x)] and L :=B(x, =) &

[ f�T =
p( f )(x)]. Then
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m(B(x, =)) * p&1�m(B(x, =)) |T =
p( f )(x)| p&1

=|
N

|T =
p( f )(x)| p&1 dt+|

L
|T =

p( f )(x)| p&1 dt

�Cp |
N

|T =
p( f )(x)| p&1 dt+Cp |

L
| f (t)| p&1 dt

+Cp |
L

|T =
p( f )(x)& f (t)| p&1 dt

�C |
B(x, =)

| f (t)| p&1 dt,

where C=
Cp
Bp

. The last inequality follows from the equality

|
L

|T =
p( f )(x)& f (t)| p&1 dt=|

N
|T =

p( f )(x)& f (t)| p&1 dt

and from (3).
Thus we have proved that the diameters of the balls B(x, =x) are bounded.

Now, by [3, Lemma 1.6], we can select from this family of balls a sequence
B(xi , =xi

) of balls which are mutually disjoint and such that

:
i

m(B(xi , =xi))�Dm(M*),

for some constant D>0. Therefore, from (2) we obtain

m(M*)�
C

D* p&1 :
i
|

B(xi , =xi
)

| f (t)| p&1 dt

�
C

D* p&1 |
0

| f (t)| p&1 dt.

Now we define f1(x)= f (x) if | f (x)|>*�2 and f1(x)=0 otherwise. Then
| f (x)|�| f1(x)|+*�2. From (i), (iii) and (1) follows that T*0, p( f )(x)�
T*0, p( f1)(x)+*�2. Therefore

m(M*)�
2 p&1C
D* p&1 |

0
| f1(x)| dx=

Ap&1

* p&1 |
[ | f | >kp&1*]

| f (x)| p&1 dx,

where Ap&1=2 p&1C�D and kp&1=1�2. This prove the case 1.
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Case 2. p=1. If m([t # 0 : | f (t)|>*])=� then the inequality in (a)
is trivial. So that we can suppose m([t # 0 : | f (t)|>*])<�. If x # M* then
there exist ===x and a # T =

1( f )(x) such that |a|>* and B(x, =)/0. We
shall prove that

m(B(x, =))�2m([t # B(x, =) : | f (t)|>*]). (4)

In fact, if a>0 then *<U =( f )(x). Hence m([t # B(x, =) : | f (t)|>*])�
m([t # B(x, =) : f (t)>*])�m(B(x, =))�2. Suppose a<0 and let a<s<&*.
We have that

m([t # B(x, =) : | f (t)|>*])�m([t # B(x, =) : f (t)<&*])

=m(B(x, =))&m([t # B(x, =) : f (t)� &*])

�m(B(x, =))&m([t # B(x, =) : f (t)>s])

�m(B(x, =))�2.

The last inequality follows from L=( f )(x)�a. Then (4) follows.
Since m([t # 0 : | f (t)|>*])<� we obtain from (4) that the diameters

of the balls B(x, =x) are bounded. Let G :=�x # M*
B(x, =). The set G is

open. Again, an application of [3, Lemma 1.6] give us a countable sub-
collection of balls mutually disjoint and D>0 such that

Dm*(M*)�Dm(G)�:
i

m(B(x i , =i))�2m([t # 0 : | f (t)|>*]).

This conclude the proof of case two if we take k0=1 and A0=2�D.
Now we prove part (b). Since | f |�& f &� , a.e. we have that (P3) and

(P4) imply T =
p( f )�& f &� a.e. Hence we obtain (b) for p$=� with A�=1.

Using a similar argument as given in [3, p. 7] and using the properties
(P1) and (P3) we obtain (b) for the case p&1<p$. K

3. LEBESGUE'S DIFFERENTIATION THEOREM

In the present section we shall prove a generalization of the ``Lebesgue's
Differentiation Theorem'' for the operators T =

p f. First we need to prove the
following theorem. By M=M(0) we denote the set of all measurable
functions over 0.

Theorem 3.1. Let [T =]=>0 be a family of operators, not necessarily
linear, where T =: Lp(0) � M for some 0�p<�. We consider the maximal
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function T*( f )(x) :=sup=>0 |T =( f )(x)|. Suppose that T* satisfies the follow-
ing weak inequality,

m*([x # 0 : T*( f )(x)>*])�
A
* p |

[ | f |>k*]
| f (x)| p dx, (5)

for some constants A, k>0. Moreover assume that there exists a set D/Lp(0)
with the following properties:

(A1) For every *>0, f # Lp(0) and g # D

m*([x # 0 : lim sup
= � 0

|T =( f &g)(x)&T =( f )(x)+T =(g)(x)|>*])=0.

(A2) If f # Lp(0) then for every =>0 and *>0 there exists g # D such
that

|
[ | f &g| >*]

|( f &g)(t)| p<=.

(A3) lim= � 0 T =(g)(x)= g(x) a.e. for every g # D.

Then we have that lim= � 0 T =( f )(x)= f (x) a.e. for every f # Lp(0).

Proof. It is enough to prove that m*(00)=0 for every *>0, where

00 :=[x # 0 : lim sup
= � 0

|T =( f )(x)& f (x)|>*]

For g # D we have that 00 /01 _ 02 _ 03 _ 04 where

01 :=[x # 0 : lim sup
= � 0

|T =( f &g)(x)&T =( f )(x)+T =(g)(x)|>*�4]

02 :=[x # 0 : lim sup
= � 0

|T =(g)(x)& g(x)|>*�4]

03 :=[x # 0 : | g(x)& f (x)|>*�4]

04 :=[x # 0 : lim sup
= � 0

|T =( f &g)(x)|>*�4].

By (A1) and (A3) we have that m*(01)=m*(02)=0. Let $>0 be
arbitrary. From (A2) we get g # D with �[ | f &g| >:] |( f &g)(x)| p dx<$,
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where : :=min[*�4, k*�4]. Therefore we see that m(03)<$�: p. Moreover
inequality (5) implies that

m*(04)�m*([x # 0 : T*( f &g)(x)>*�4])

�
4 pA
* p |

[ | f &g| >k*�4]
|( f &g)(x)| p dx

�
4 pA
* p $.

Since the number $ is arbitrary we deduce that m*(00)=0. K

Corollary 3.2. For 1<p<� and f # Lp&1(Rn)+L�(Rn) we have
that

lim
= � 0

T =
p( f )(x)= f (x) a.e.

If p=1 then

lim
= � 0

U =( f )(x)= lim
= � 0

L=( f )(x)= f (x) a.e.

for every f # L0(Rn).

Proof. It is sufficient to prove that the convergence a.e. holds in all
open set 0 of finite measure. Let 0 be an open set with m(0)<�. We
observe that if f # Lp&1(Rn)+L�(Rn) then f # Lp&1(0). Hence from
Theorem 2.1 we have that T =

p , U = and L= satisfy (5). Let D the set of all
simple functions which are continuous almost everywhere, i.e. g # D if
g=�n

i=1 ai/Ai with m(�Ai)=0, for every i=1, ..., n, where �A denote the
boundary of the set A. As a consequence of property (P1) we have that for
T ==T =

p , U = or L= and g=�n
i=1 a i/Ai # D

[x # 0 : lim sup
= � 0

|T =( f &g)(x)&T =( f )(x)+T =(g)(x)|>*]/ .
n

i=1

�Ai .

so that we have (A1) for every 1�p<�. The property (A2) is a conse-
quence of the well known properties of density of the simple functions
(observe that (A2) is not true if m(0)=� and p=1). Moreover for g # D

it is easy to prove that (A3) holds for the operators T =
p , U = and L=. K
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